
Verification of Evolving
Software via Component
Substitutability Analysis

Sagar Chaki
Carnegie Mellon University,
Software Engineering Institute (SEI)

Edmund Clarke
Carnegie Mellon University,
School of Computer Science (SCS)

Natasha Sharygina
Carnegie Mellon University, SEI and SCS

Nishant Sinha
Carnegie Mellon University, Department of
Electrical and Computer Engineering

December 2005

Independent Research and Development Project
2005

Unlimited distribution subject to the copyright.

Technical Report
CMU/SEI-2005-TR-008
ESC-TR-2005-008

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2005 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document
for external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web
site (http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract . v

1 Introduction . 1

2 Model Checking . 5
2.1 The Process of Model Checking . 6
2.2 Current Research in Software Model Checking . 6

2.2.1 Compositional Reasoning . 7
2.2.2 Abstraction . 7
2.2.3 Counterexample-Guided Abstraction Refinement (CEGAR) 8

3 Verification of Evolving Software . 11
3.1 Background and Notation . 11
3.2 Containment . 13
3.3 Compatibility . 14

3.3.1 Dynamic Regular-Set Learning . 14
3.3.2 Assume-Guarantee Reasoning . 16
3.3.3 Compatibility Check for C Components . 16

3.4 Feedback . 20
3.5 Implementation and Experimental Evaluation . 21

4 Related Work . 23

5 Conclusion . 25

References . 27

CMU/SEI-2005-TR-008 i

ii CMU/SEI-2005-TR-008

List of Figures

Figure 1: A Small Program with Two Threads of Control . 2
Figure 2: The CEGAR Framework . 8
Figure 3: The Containment Phase of the Substitutability Framework 13
Figure 4: The Compatibility Phase of the Substitutability Framework 17
Figure 5: Pseudo-Code for Efficient Compatibility Checking . 19
Figure 6: Summary of Results for DynamicCheck . 22

CMU/SEI-2005-TR-008 iii

iv CMU/SEI-2005-TR-008

Abstract

Formal verification by model checking has the potential to produce major enhancements in the
reliability and robustness of software. However, a shortcoming in most model checking research is the
failure to consider how to make the use of model checking routine throughout various stages of
software development. This report presents results of the Independent Research and Development
(IRAD) project on verification of evolving software conducted at the Software Engineering Institute in
2005. The research conducted as part of the IRAD project considered ways to reduce the effort of
subsequent verifications. In particular, it resulted in the development of techniques that exploit the
results of previous verification efforts and focus only on the portions of the system that have changed
(components). Thus, these new techniques incorporate model checking into development processes in
a much less intrusive or cumbersome manner than previous verification techniques.

The report presents an automated and compositional procedure to solve the component substitutability
problem. The solution contributes two techniques for checking the correctness of software upgrades:
(1) a technique based on simultaneous use of overapproximations and underapproximations obtained
via existential and universal abstractions and (2) a dynamic assume-guarantee reasoning algorithm in
which previously generated component assumptions are reused and altered “on the fly” to prove or
disprove the global safety properties on the updated system. When upgrades are found to be
non-substitutable, the solution generates constructive feedback that shows developers how to improve
the components. The substitutability approach has been implemented and validated in the Component
Formal Reasoning Technology (COMFORT) model checking tool set. The experimental evaluation of
an industrial benchmark demonstrates encouraging results.

CMU/SEI-2005-TR-008 v

vi CMU/SEI-2005-TR-008

1 Introduction

Correctness of computer software is critical in today’s information society, especially for software that
runs on computers embedded in our transportation and communication infrastructure. Examples of
serious software errors are easy to find. For instance, in 1997, the propulsion system of the Aegis
missile cruiser USS Yorktown failed for over two hours due to a software bug [Slabodkin 98]. The
cause turned out to be a division by zero within a database system, which resulted in an exception and
a crash of all computer consoles and terminal units. The software of the USS Yorktown operated on a
network of Windows NT machines and was quite complex, consisting of several million lines of C
code.

Another instance is the development of the F/A-22 as part of the Joint Strike Fighter program. The
project was delayed multiple times, and often the project’s delay was caused by the inability of
software developers to produce bug-free software for the F/A-22. Pilots often had to reboot computers
while in the air [U.S. Govt. 05, Nellemann 94]. The F/A-22 has about 2.5 million lines of software
written in Ada. This number is expected to rise to 6 million lines of C/C++ code on the F-35.

Computer software also plays an important role in other parts of our infrastructure. On August 14,
2003, a blackout affected more than 50 million people in large areas on the U.S. east coast, causing an
estimated damage between $4 billion and $10 billion [U.S.-Canada 04]. While the blackout was
triggered by trees hitting local power transmission lines, a software bug made the damage devastating.
A bug in General Electric (GE) Energy’s XA/21 power control system allowed the blackout to spread.
The software had been in use since 1990, but the bug had not become apparent previously. The flaw
was discovered by an audit of over 4 million lines of C/C++ code after the blackout and was identified
as a “race condition.”

Programs in imperative languages like C or C++ are executed line-by-line in what is called a thread of
control. It is tempting to hope that a line-by-line inspection of the code, following this thread of
control, will uncover all the flaws in a program. The problem is that complex systems have many
software components running in parallel, so there are many different threads of control that run
simultaneously. While one of these threads may be executing some statement in its program, another
thread, with exactly the same program, may be executing an entirely different line of code
concurrently. Consequently, in the presence of multiple threads, any combination of program lines
that the threads can execute must be considered.

The state of the program is the location of the control in each thread and the values of the program
variables. To discover flaws, the possible states of the program must be explored. To illustrate the
large number of states that concurrency can cause, consider the small program in Figure 1. It has one
variable x, which is initialized with zero. It has two threads (A and B) of control and only four lines of
code in total. The first line in both threads simply idles until x becomes zero. The second line sets x to
1 or 2, respectively. Despite its tiny size, the program has 10 reachable states. The explosion in the
number of reachable states is due to the different combinations of program locations in the two threads
A and B. Thus, a manual search for errors in large concurrent programs is infeasible.

Model checking is an automated technique for the exploration of all the states of a system
[Clarke 82, Clarke 00b]. Introduced in 1981, it has become a standard verification technique in the
hardware industry. It has been successfully used to find bugs in circuitry that would have been hard to

CMU/SEI-2005-TR-008 1

find by inspection alone.

Thread A

1 while(x!=0) skip;
2 x=1;
3

Thread B

1 while(x!=0) skip;
2 x=2;
3

Figure 1: A Small Program with Two Threads of Control

Model checking also has the potential to produce major enhancements in the reliability and robustness
of software. The basic idea of software model checking is to explore all the states of the software
system systematically. The states are checked for errors. Such an error may be division by zero as in
the case of the USS Yorktown, a race condition as in the case of GE’s XA/21, or a violated assertion.
Once such an erroneous state is found, it can be reported to the programmer together with a
counterexample (i.e., an error trace), which demonstrates the flaw. Counterexamples can be very
helpful for understanding the nature of the error and fixing it.

However, the effectiveness of the model checking of such systems is severely constrained by the state
space explosion problem (by the sheer number of states a program can be in). If there are too many
states, it becomes impossible to explore all of them, even on a powerful computer.

Much of the research in this area is therefore targeted at reducing the state space of the model used for
verification. One principal method in state space reduction of software systems is abstraction.
Abstraction techniques reduce the program state space by generating a smaller set of states in a way
that preserves the relevant behaviors of the system. Abstractions are most often performed in an
informal, manual manner and require considerable expertise.

Manual abstraction is error prone too. The person performing the abstraction will often capture the
intended behavior when abstracting and not the behavior of the actual code. Thus, a bug could be
hidden in the code. Industrial applications of model checking therefore favor automated ways to
compute the abstract model. One such method, called predicate abstraction [Graf 97, Colón 98], has
proven to be particularly successful when applied to large software programs. We exploited predicate
abstraction while developing a solution to the problem of establishing the correctness of evolving
systems. We describe predicate abstraction and its application to verification of evolving software in
Section 3.2.

The other principal approach in reducing the state space of the verifiable model is compositional
reasoning. Compositional reasoning partitions verification into checks of individual modules, while
the global correctness of the composed system is established by constructing a proof outline that
exploits the modular structure of the system. We used the assume-guarantee style of compositional
reasoning to support verification of evolved systems [Pnueli 85]. We describe the assume-guarantee
reasoning paradigm and its application to verification of evolving software in Section 3.3.

In this document, we describe a particular model checking problem, namely verification of evolving
software. The rest of the document is organized as follows: Section 2 provides some background
information on the model checking technology, the types of claims it can analyze, and the current state
of research and practice of model checking. Section 3 describes the problem of verification of
evolving systems and presents a detailed description of the techniques that we have developed to

2 CMU/SEI-2005-TR-008

overcome difficulties in the verification of evolving programs. Section 4 provides an overview of
related work, and Section 5 summarizes the contributions of the Independent Research and
Development (IRAD) project.

CMU/SEI-2005-TR-008 3

4 CMU/SEI-2005-TR-008

2 Model Checking

In formal verification, a system is modeled mathematically, and its specification (also called a claim in
model checking) is described in a formal language. When the behavior in a system model does not
violate the behavior specified in a claim, the model satisfies the specification. Model checking
[Clarke 82] is a fully automated form of formal verification that uses algorithms that check whether a
system satisfies a desired claim through an exhaustive search of all possible executions of the system.
The exhaustive nature of model checking renders the typical testing question of adequate coverage
unnecessary.

Model checking is a technique for verifying finite-state concurrent systems. One benefit of this
restriction to finite-state systems is that verification can be performed automatically. Given sufficient
resources, model checking always terminates with a “yes” or “no” answer. Moreover, it can be
implemented by algorithms that have reasonable efficiency and that can be run on moderate-sized
machines.

Although the restriction to finite-state systems may seem to be a major disadvantage, model checking
is applicable to several important classes of systems [Clarke 00b]. Hardware controllers are
finite-state systems, as are many communication protocols. Software, which is not finite state, can still
be verified if variables are assumed to be defined over finite domains. This assumption does not
restrict the applicability of model checking because many interesting behaviors of the software
systems can be specified with finite-state models. For example, systems with unbounded message
queues can be verified by restricting the size of the queues to a small number such as two or three.

In classical model checking, systems are modeled mathematically as state transition systems, and
claims are specified using temporal logic [Pnueli 77, Clarke 86]. Temporal logic is used to define
formulas that describe system behavior over time, where the propositions of the logic are behaviors of
interest involving state information (current state or values of variables) or events. Temporal logic
formulas combine such propositions with temporal operators to describe interesting patterns of
propositions over time, such as the following:

• Whenever X is greater than Y, Z must also be greater than Y.

• Some invariant (e.g., mutual exclusion with respect to some resource) always
holds once initialization is complete.

• A component can issue requests only during an allowed interval (as bounded by
events granting and taking away permission).

Temporal logic model checking is extremely useful in verifying the behavior of systems composed of
concurrent processes or interacting nondeterministic sequential tasks. Concurrency errors (as well as
errors caused by the nondeterministic execution of actions) are among the most difficult to find by
testing because they tend to be irreproducible.

CMU/SEI-2005-TR-008 5

2.1 The Process of Model Checking
Model checking involves the following steps:

1. The system is modeled using the description language of a model checker,
producing a model M.

2. The claim to check is defined using the specification language of the model
checker, producing a temporal logic formula φ.

3. The model checker automatically checks whether M |= φ (i.e., whether M
satisfies φ).

The model checker checks all system executions captured by the model and produces the answer
“yes” as output if the claim holds in the model (M) and the answer “no” otherwise. When a claim is
not satisfied, most model checkers produce a counterexample of system behavior that causes the
failure. A counterexample defines an execution trace that violates the claim. Counterexamples are one
of the most useful features of model checking, as they allow users to understand quickly why a claim
is not satisfied.

2.2 Current Research in Software Model Checking
Model checking is efficient in hardware verification, but applying it to software is complicated by
several factors, ranging from the difficulty of modeling computer systems (due to the complexity of
programming languages as compared to hardware description languages) to difficulties in specifying
meaningful claims for software using the usual temporal logical formalisms of model checking. The
most significant limitation, however, is the state space explosion problem (which applies to both
hardware and software), whereby the complexity of model checking becomes prohibitive.

State space explosion results from the fact that the size of the state transition system is exponential in
the number of variables and concurrent units in the system. When the system is composed of several
concurrent units, its combined description may lead to an exponential explosion as well. The state
space explosion problem is the subject of most model checking research.

The following state space reduction techniques are commonly used during verification of software:

• Compositional reasoning: Verification is partitioned into checks of individual
modules, while the global correctness of the composed system is established by
constructing a proof outline that exploits the modular structure of the system.

• Abstraction: A smaller abstract system is constructed such that the claim holds
for the original system if it holds for the abstract system.

• Counterexample-guided abstraction refinement: Abstracted systems are
refined iteratively using information extracted from counterexamples until an error
is found or it is proven that the system satisfies the verification claim.

6 CMU/SEI-2005-TR-008

2.2.1 Compositional Reasoning

Because model checking was created to verify hardware systems and because most hardware designs
have a natural division into modules, the extension of model checking to larger designs is often
achieved by taking a “divide and conquer” approach. More specifically, the verification claim for a
system is first decomposed into a set of local claims, one for each system module. These local claims
are then verified separately. The compositional approach establishes whether for given systems M1
and M2 and a claim T , the composed system satisfies T (written M1 ‖M2 |= T). A naive
compositional approach proceeds by executing the following steps: (1) M1 |= T and (2) M2 |= T
and concludes by proofs that M1 ‖M2 |= T. Although this rule is sound in theory, it is often not
useful in practice. Usually, both M1 and M2 behave like T only in a suitable environment. To solve
this problem, the compositional principle can be strengthened to an assume-guarantee principle
[Abadi 95, Alur 96, Clarke 89, Kurshan 95, McMillan 97]: in order to check M |= T , it suffices to
check both M1 ‖ T2 |= T1 and M2 ‖ T1 |= T2. This obligation uses the local specifications T1 and
T2 as the constraining environment (also called assumptions) with regard to the behavior of M2 and
M1 taken in isolation from M1 and M2, respectively. In general, for a system composed of multiple
modules, assume-guarantee reasoning succeeds only if it can be shown that each system component
Mi satisfies a corresponding specification component Ti under a suitable constraining environment.

2.2.2 Abstraction

Abstraction is one of the principal techniques for reducing the complexity of a verification
problem [Ball 01, Clarke 92, Kurshan 95]. Abstraction techniques reduce the state space by mapping
the concrete set of actual system states to an abstract set of states that preserve the actual system’s
behavior. Abstractions are usually performed in an informal, manual manner and require considerable
expertise. Predicate abstraction [Graf 97, Colón 98] is one of the most popular and widely applied
methods for the systematic abstraction of systems. It maps concrete data types to abstract data types
through predicates over the concrete data. However, the computational cost of the predicate
abstraction procedure may be too high, making generation of a full set of predicates for a large system
infeasible.

In practice, the number of computed predicates is bounded, and model checking is guaranteed to
deliver sound results within this bound. The bound limit is increased when errors (if any) are found
within the bound and fixed. Under this approach, software systems are rendered finite by restricting
variables to finite domains. As mentioned earlier, bounded model checking does not seriously restrict
the applicability of model checking, since many interesting behaviors of software systems can be
specified using bounded finite-state models.

The abstract program is created using existential abstraction [Clarke 92]. This method defines the
transition relation of the abstract program so it is guaranteed to be a conservative overapproximation
of the original program, with respect to the set of given predicates. The use of a conservative
abstraction, as opposed to an exact abstraction, produces considerable reductions in the state space.
The drawback of the conservative abstraction is that when model checking of the abstract program
fails, it may produce a counterexample that does not correspond to a concrete counterexample. Such a
counterexample is usually called spurious. When a spurious counterexample is encountered,
refinement is performed by adjusting the set of predicates in a way that eliminates it.

CMU/SEI-2005-TR-008 7

2.2.3 Counterexample-Guided Abstraction Refinement (CEGAR)

Although conservative abstraction procedures (which ensure that if a claim holds for the abstract
system, it also holds for the original system) are typically used, any form of abstraction may introduce
behaviors not found in the concrete system. Counterexamples from model checking the abstract
system are often used to detect unrealistic behaviors and refine the system. Repeatedly refining the
abstractions, however, may introduce additional behaviors that result in state space explosion during
the model checking phase. These drawbacks (coupled with the potential effectiveness of abstraction
methods) motivated research into targeted abstractions (i.e., control abstraction, loop abstraction, and
so forth), which can result in more accurate abstract systems.

The abstraction refinement process has been automated by the CEGAR paradigm
[Kurshan 95, Ball 00, Clarke 00a, Das 01]. The CEGAR framework is shown in Figure 2: one starts
with a coarse abstraction (for example, an abstraction of a C program). If an error trace reported by
the model checker is not realistic, the error trace is used to refine the abstract program, and the process
proceeds until no spurious error traces can be found. The actual steps of the loop follow the
abstract-verify-refine paradigm and depend on the abstraction and refinement techniques used.

C Prog

Spec ϕ

ϕ true

ϕ false +

counterexample

Counterexample

Model

Checking

Spurious?

Predicate

Abstraction

Predicate
Refinement

Boolean Program

ϕ

Spurious
Counterexample

Figure 2: The CEGAR Framework

The steps are described below in the context of predicate abstraction.

1. Program abstraction: Given a set of predicates, a finite-state model is extracted
from the code of a software system, and the abstract transition system is
constructed.

2. Verification: A model checking algorithm is run to check whether the model
created by applying predicate abstraction satisfies the desired behavioral claim ϕ.
If the claim holds, the model checker reports success (ϕ is true), and the CEGAR
loop terminates. Otherwise, the model checker extracts a counterexample, and the
computation proceeds to the next step.

3. Counterexample validation: The counterexample is examined to determine
whether it is spurious. This examination is done by simulating the (concrete)
program using the abstract counterexample as a guide, to find out if the
counterexample represents actual program behavior. If this is the case, the bug is
reported (ϕ is false), and the CEGAR loop terminates. Otherwise, the CEGAR
loop proceeds to the next step.

8 CMU/SEI-2005-TR-008

4. Predicate refinement: The set of predicates is changed to eliminate the detected
spurious counterexample and possibly other spurious behaviors introduced by
predicate abstraction. Given the updated set of predicates, the CEGAR loop
proceeds to Step 1.

The efficiency of this process depends on the efficiency of the program abstraction and predicate
refinement procedures. While program abstraction focuses on constructing the transition relation of
the abstract program, the focus of predicate refinement is to define efficient techniques for choosing
the set of predicates in a way that eliminates spurious counterexamples. In both areas of research, low
computational cost is a key factor because it enables the application of model checking to the
verification of realistic programs.

This report presents techniques that use efficient abstraction and abstraction-refinement techniques of
the CEGAR loop by employing techniques implemented in the COPPER model checker [Chaki 05c].
In this report, we present a solution to the model checking problem that arises during verification of
evolving systems, and we refer the reader to the article by Chaki and colleagues [Chaki 04c] for
details regarding the COPPER abstraction and refinement procedures. The next section describes the
problem of verifying evolving software and presents our solution to address it. This solution was
originally published by Chaki and colleagues [Chaki 05a].

CMU/SEI-2005-TR-008 9

10 CMU/SEI-2005-TR-008

3 Verification of Evolving Software

Successfully transitioning model checking technology has proven to be a challenging task. While the
benefits of successful model checking are clear, there are several barriers to successful transition.
Principally, model checking has serious scalability problems, and the techniques are difficult for
software engineers to use.

A major shortcoming in most model checking research is the failure to consider how to make the use
of model checking routine throughout various stages of software development. Software inevitably
evolves as designs take shape, requirements change, and bugs are discovered and fixed. Model
checking is useful at each such point, but the current state of model checking requires that software
verification of the entire system be performed anew each time. The time and effort required to verify
an entire system can be considerable, and repeating the exercise after each change, no matter how
small, would likely discourage use.

In this report, we present ways to reduce the effort of subsequent verifications. In particular, by
exploiting the results of previous verification efforts and focusing only on the portions of the system
that have changed (components), model checking can be incorporated into development processes in a
much less intrusive or cumbersome manner.

We present techniques that, while not affecting the initial model checking effort, reduce by orders of
magnitude the effort to keep analysis results up to date with evolving system design. The techniques
are decision procedures that determine if all system-correctness properties previously established by
model checking remain valid for the new version of the system.

The key idea is to determine automatically if these properties hold for the new system without
repeating each of the individual verification checks. We present a verification method [Chaki 05a] that
focuses on system components that have changed during the evolution of software and determines if
all behaviors of the original system are preserved in the new version of the system. Moreover,
whenever behaviors are not preserved, our technique automatically provides feedback to developers
showing how to improve the components whenever possible.

3.1 Background and Notation
Let • denote the concatenation operator over sequences, and let X∗ denote zero or more applications
of • over X as usual. For any two sets X and Y, we will denote the set {x • y | x ∈ X ∧ y ∈ Y } by
X • Y.

Definition 1 (Words and Traces) Given an alphabet Σ and a set of atomic propositions AP , we
often say that (Σ,AP) is a state/event (SE) alphabet. For an SE alphabet Σ̂ = (Σ,AP), the set of
words over Σ̂ is denoted by Word(Σ̂) and defined as Word(Σ̂) = (Σ • 2AP)∗. The set of traces over
Σ̂ is denoted by Trace(Σ̂) and defined as Trace(Σ̂) = 2AP •Word(Σ̂).

Thus, a word or a trace is an alternating sequence of subsets of AP and elements of Σ. However, a
word always begins with an action, ends with a set of propositions, and can be empty. In contrast, a
trace begins and ends with a set of propositions and cannot be empty.

CMU/SEI-2005-TR-008 11

Definition 2 (Doubly Labeled Automaton) A doubly labeled automaton (DLA) is a 7-tuple
(S , Init ,AP ,L, Σ, δ,F) such that (i) S is a finite set of states, (ii) Init ⊆ S is a set of initial states,
(iii) AP is a finite set of (atomic) state propositions, (iv) L : S → 2AP is a state-labeling function, (v)
Σ is a finite set of events or actions (alphabet), (vi) δ ⊆ S × Σ× S is a transition relation, and (vii)
F ⊆ S is a set of final or accepting states.

For any DLA with transition relation δ, we write q
α−→ q′ to mean q′ ∈ δ(q, α). A DLA is said to be

deterministic if for any q ∈ S , α ∈ Σ, and p ⊆ AP , there is at most one q′ ∈ S such that q
α−→ q′ and

L(q′) = p. DLAs are not more expressive than standard finite automata, since propositional labelings
can always be rewritten in terms of actions [Clarke 00b]. However, we choose to use the DLA
formalism for the sake of simplicity because it captures the essence of the SE-based notation.

Definition 3 (Language) Let M = (S , Init ,AP ,L, Σ, δ,F) be a DLA and Σ̂ = (Σ,AP). A trace
t ∈ Trace(Σ̂) is accepted by M if t = p1, α1, p2, . . . , αn−1, pn, and there exists a sequence
s1, s2, . . . , sn of states of M such that (i) s1 ∈ Init , (ii) sn ∈ F , (iii) for 1 ≤ i ≤ n, L(si) = pi, and
(iv) for 1 ≤ i < n, si

αi−→ si+1. The language of M is denoted by L(M) and defined as the set of all
traces accepted by M .

A language is said to be regular iff it is accepted by some DLA. The set of regular languages is closed
under union, intersection, and complementation. Deterministic DLAs (DDLAs) are equivalent to
DLAs as far as language acceptance is concerned. In other words, for any regular language L there is
a DDLA M such that L(M) = L. Also every regular language L is accepted by a unique (up to
isomorphism) minimal DDLA.

Definition 4 (Abstraction) Given two DLAs M1 and M2, we say that M2 is an abstraction of M1,
denoted by M1 �M2, iff L(M1) ⊆ L(M2).

Definition 5 (Parallel Composition) Let M1 = (S1, Init1,AP1,L1, Σ1, δ1,F1) and
M2 = (S2, Init2,AP2,L2, Σ2, δ2,F2) be two DLAs. The parallel composition of M1 and M2,
denoted by M1 ‖M2, is the DLA (S1 × S2, Init1 × Init2,AP1 ∪AP2,L, Σ1 ∪ Σ2, δ,F1 × F2),
where (i) L(s1, s2) = L1(s1) ∪ L2(s2) and (ii) δ is such that (s1, s2)

α−→ (s′1, s′2) iff

∀i ∈ {1, 2} � (α �∈ Σi ∧ si = s′i)
∨

(α ∈ Σi ∧ si
α−→ s′i)

In other words, DLAs must synchronize on shared actions and proceed independently on local actions.
This notion of parallel composition is derived from the Communicating Sequential Process (CSP)
formalism [Roscoe 98].

Definition 6 (Weakest Assumption) For any DLA M and any safety property expressed as a DLA ϕ,
there exists a weakest (w.r.t. the � preorder) DLA, which we denote as WA, with the following
property: for any DLA E, M ‖ E � ϕ iff E �WA [Giannakopoulou 02]. In fact, it can be shown
that WA is a DLA accepting the language L(M ‖ ϕ).

12 CMU/SEI-2005-TR-008

3.2 Containment
Recall that in the containment step, we verify for each i ∈ I, that Ci � C

′
i (i.e., every behavior of Ci

is also a behavior of C
′
i). If Ci �� C

′
i , we construct a set Fi of behaviors in Behv(Ci) \ Behv(C

′
i),

which will be used subsequently for feedback generation. This containment check is performed
iteratively and component-wise as depicted in Figure 3.

True

No All behaviors are preserved

No

Over−approximate Under−approximate

Report Feedback

False + CE

Yes

M′iMi

C′iCi

RefineRefine

Build: F ←CE

Check: CE �∈C′i

Check: CE ∈CiVALIDATION1

VALIDATION2

Check: Mi ⊆M′iVERIFICATION

ABSTRACTION

Yes⇒CE ∈Ci \C′i

Figure 3: The Containment Phase of the Substitutability Framework

For each i ∈ I, the containment check proceeds as follows:

1. Abstraction: Construct finite models M and M ′ such that (C1) Ci �M and
(C2) M ′ � C

′
i . Note that M is an overapproximation of Ci and can be

constructed by standard predicate abstraction. However, M ′ is constructed from
C

′
i via a modified predicate abstraction that produces an underapproximation of

its input C program.

Standard predicate abstraction constructs an overapproximation of the concrete
system via existential abstraction. In doing so, it checks the validity of formulas
using a theorem prover. Intuitively these formulas express conditions under which
a transition is possible between a pair of abstract states. Our modified predicate
abstraction constructs a universal approximation by modifying these formulas
appropriately, so they represent conditions under which a transition is inevitable
between a pair of abstract states.

2. Verification: Verify that M �M ′. If so, then from (C1) and (C2) above, we
know that Ci � C

′
i , and we terminate with success. Otherwise we obtain a

counterexample CE .

3. Validation 1: Check if CE is a real behavior of Ci. If so, we proceed to the next

CMU/SEI-2005-TR-008 13

step. Otherwise we refine model M and repeat the process from Step 2. This
validation and refinement step is done according to the CEGAR procedure
implemented in the MAGIC tool [Chaki 04c].

4. Validation 2: Check if CE is not a real behavior of C
′
i . If it is not, we know that

CE ∈ Behv(Ci) \ Behv(C
′
i). We add CE to Fi and stop. Otherwise we refine

M ′ and repeat the process from Step 2. This second validation and refinement step
is an antithesis of standard abstraction refinement because it adds the valid
behavior CE back to M ′. However, it is conceptually similar to standard
abstraction-refinement, and we omit its details in this report.

The above process terminates as soon as it adds a single behavior to Fi. However, it can be modified
easily to generate a set of behaviors in Fi as follows. Construct a set of counterexamples ĈE in Step
2. Then process each element of ĈE via Steps 3 and 4 and add to Fi every counterexample that
belongs to Ci but not to C

′
i . The next section describes the use of Fi to provide feedback to

developers, showing how to correct the updated components.

3.3 Compatibility
Recall that the compatibility check is aimed at ensuring that the upgraded system satisfies global
safety specifications. Our compatibility check procedure involves two key paradigms: dynamic
regular-set learning and assume-guarantee reasoning. We first present these two techniques and then
describe their use in our overall compatibility algorithm.

3.3.1 Dynamic Regular-Set Learning

Central to our compatibility check procedure is a new dynamic algorithm to learn regular languages.
Our algorithm is based on the L∗ algorithm developed by Angluin [Angluin 87]. The compatibility
check uses a state/event version of the L∗ that is a straightforward extension of the original algorithm
(for simplicity we will refer to both as L∗). The detailed description of the state/event L∗ algorithm
and the proof of its correctness and complexity analysis can be found in a white paper by
Chaki [Chaki 05b]. We will first present the state/event learning algorithm and then describe a
dynamic version of it that we actually use for checking compatibility. We will denote the symmetric
difference of two sets X and Y by X ⊕ Y (i.e., ρ ∈ X ⊕ Y iff ρ ∈ X \ Y or ρ ∈ Y \X).

3.3.1.1 The L∗ Algorithm

Let U be an unknown regular language over some SE alphabet Σ̂ = (Σ,AP). In order to learn U, L∗

interacts with a minimally adequate teacher MAT for U, which can provide Boolean answers to the
following two kinds of queries:

1. membership: Given a ρ ∈ Trace(Σ̂), MAT returns TRUE iff ρ ∈ U.

2. candidate: Given a DDLA D, MAT returns TRUE iff L(D) = U. If MAT returns
FALSE, it also returns a counterexample trace w ∈ L(D)⊕ U.

Given an unknown regular language U ⊆ Trace(Σ̂) and a MAT for U, the L∗ algorithm iteratively
constructs a minimal DDLA D such that L(D) = U. It maintains an observation table (S, E, T)

14 CMU/SEI-2005-TR-008

where (i) S is a prefix-closed set over Trace(Σ̂) labeling the rows of the table, (ii) E is a suffix-closed
set over Word(Σ̂) labeling the columns of the table, and (iii) T : (S ∪ S • Σ̂)× E → {0, 1} is the
valuation of the table entries such that

∀s ∈ S ∪ S • Σ̂ � ∀e ∈ E � T [s, e] = 1 ⇐⇒ s • e ∈ U

Additionally, for any s ∈ S ∪ S • Σ̂, let us define a function rs as follows:

∀e ∈ E � rs(e) = T [s, e]

Given a trace t ∈ Trace(Σ̂), we write Last(t) to mean the last set of propositions in t. L∗ always
ensures that the following invariant holds on the table: for any two distinct s1, s2 ∈ S, either rs1 �= rs2

or Last(s1) �= Last(s2). The table is said to be closed if, for every t ∈ S • Σ̂, there exists an s ∈ S
such that rs = rt and Last(s) = Last(t).

Let us denote the empty word by λ. Then L∗ starts with a table (S, E, T) such that S = 2AP ,
E = {λ}, and each iteration proceeds as follows. It first updates the table using membership queries
until it is closed. Next L∗ builds a candidate DDLA D from the table and makes a candidate query
with D. If the MAT returns TRUE to the candidate query, L∗ returns D and stops. Otherwise, L∗

updates E with a single word (constructed from the CE returned by the candidate query) and
proceeds with the next iteration. The complexity of L∗ is expressed by the following
theorem [Angluin 87, Chaki 05b]:

Theorem 1 If n is the number of states of the minimum DDLA accepting U , and m is the upper
bound on the length of any counterexample provided by the MAT , then the total running time of L∗ is
bounded by a polynomial in m and n. Moreover, the observation table is of size O(m2n2 + mn3).

3.3.1.2 Dynamic L∗

Normally L∗ initializes with S = 2AP and E = {λ}. This can be a drawback in cases where a
previously learned candidate (and hence a table) exists and we wish to restart learning using
information from the previous table. In the following discussion, we show that if L∗ begins with any
non-empty valid table, it must terminate with the correct result (Theorem 2). In particular, this
theorem allows us to perform our compatibility check dynamically by restarting L∗ with any
previously computed table by revalidating it instead of starting from an empty table.1

Definition 7 (Agreement) An observation table (S, E, T) is said to agree with a regular language U
iff: ∀(s, e) ∈ (S ∪ S • Σ̂)× E, T (s, e) = 1 iff s • e ∈ U . Also, (S, E, T) agrees with a candidate
DDLA D if it agrees with L(D).

Definition 8 (Validity) An observation table T = (S, E, T) is said to be valid for a language U iff
(S, E, T) agrees with U. We say that a candidate derived from a closed table T is valid if T is valid.

Theorem 2 L∗ terminates with a correct result for any unknown language U starting from any valid
table for U .

1 A similar idea was also proposed in the context of adaptive model checking [Groce 02].

CMU/SEI-2005-TR-008 15

Proof. Let n be the number of states in the minimal DDLA MU such that L(MU) = U. Note that both
Theorem 1 and Lemma 5 from Angluin’s correctness proof for L∗ [Angluin 87] hold true for valid and
closed tables and candidates consistent with them. It follows from Theorem 1 and Lemma 5 that L∗

can always make a valid table closed and hence is able to construct a candidate, say D, with at most n
states. We now show that every subsequent candidate must have at least one more state than D.

A candidate query with D either returns TRUE or a counterexample CE ∈ L(D)⊕ U. Note that the
table must agree with D since D is consistent with it. Also since the table is valid, it must agree with
U. Therefore, CE �∈ (S ∪ S • Σ̂) • E and will be added to S. Again, a valid and closed table
(S′, E′, T ′) must be obtained eventually after adding CE . Let D′ be the corresponding candidate.

Now, D′ is consistent with T since T ′ extends T . Also D′ agrees with MU as far as accepting CE is
concerned, while D does not. Hence D′ is inequivalent to D, and, according to Theorem 1 in
Angluin’s proof, it must have at least one more state than D. Hence, starting from D, L∗ can make at
most n− 1 incorrect candidates, since the number of states is initially at least one, always increases
monotonically, and may not exceed n− 1. Since L∗ must continue making new candidates as long as
it is running, it must terminate with a correct candidate MU .

Suppose we have a table T that is valid for an unknown language U, and we have a new unknown
language U ′ different from U. Suppose we want to learn U ′ by starting L∗ with table T . Note that in
general T will not be valid for U ′; hence, starting from T will not be appropriate. However, we can
first validate T against U ′ and then start L∗ from the validated T . Theorem 2 provides the key insight
behind the correctness of this procedure. As we shall see, this idea forms the backbone of our dynamic
compatibility-check procedure (see Section 3.3.3).

3.3.2 Assume-Guarantee Reasoning

Along with dynamic L∗, we also use assume-guarantee style compositional reasoning to check
compatibility. Given a set of component DLAs M1, . . . , Mn and a specification DLA ϕ, the following
non-circular rule AG [Pnueli 85] can be used to verify M1 ‖ · · · ‖Mn � ϕ:

M1 ‖ A1 � ϕ
M2 ‖ · · · ‖Mn � A1

M1 ‖ · · · ‖Mn � ϕ

In the above equation, A1 is a DLA representing the assumption about the environment under which
M1 is expected to operate correctly. As also observed by Cobleigh and colleagues [Cobleigh 03], the
second premise is itself an instance of the top-level proof obligation with n− 1 component DLAs.
Hence, AG can be applied to decompose it further.

3.3.3 Compatibility Check for C Components

The procedure for checking compatibility of new components in the context of the original component
assembly is presented in Figure 4. Given an old component assembly C = {C1, . . . ,Cn} and a set of
new components C′ = {C ′

i | i ∈ I} (where I ⊆ {1, . . . , n}), the compatibility-check procedure
checks if a safety property ϕ holds in the new assembly. We first present an overview of the
compatibility procedure and then discuss its implementation in detail. The procedure uses a
DynamicCheck algorithm and is done in an iterative abstraction-refinement style as follows:

16 CMU/SEI-2005-TR-008

1. Use predicate abstraction to obtain finite DLA models Mi, where Mi is
constructed from Ci if i �∈ I and from C ′

i if i ∈ I. The abstraction is carried out
component-wise. LetM = {M1, . . . , Mn}.

2. Apply DynamicCheck onM. If the result is TRUE, the compatibility check
terminates successfully. Otherwise, we obtain a counterexample CE .

3. Check if CE is a valid counterexample. Once again this is done component-wise.
If CE is valid, the compatibility check terminates unsuccessfully with CE as a
counterexample. Otherwise we go to the next step.

4. Refine a specific model, say Mk, such that the spurious CE is eliminated. Repeat
the process from Step 2.

New Components

L*

True

CE spurious

No
CE provided

False + CE
Yes

Old Components

Predicate Abstraction

Refine M

M = {M1, . . . ,Mn}

Check: M � ϕ

New Components are Substitutable

New Components are not Substitutable

{Ci | i �∈ I} {C′i | i ∈ I}

Figure 4: The Compatibility Phase of the Substitutability Framework

3.3.3.1 Overview of DynamicCheck

We first present an overview of the algorithm for two DLAs and then generalize it to an arbitrary
collection of DLAs. Suppose we have two old DLAs, M1 and M2, and a property DLA ϕ. We assume
that we previously tried to verify M1 ‖M2 � ϕ using DynamicCheck. The algorithm
DynamicCheck uses dynamic L∗ to learn appropriate assumptions that can discharge the premises of
AG. In particular, suppose that while trying to verify M1 ‖M2 � ϕ, DynamicCheck had constructed
an observation table T .

Now suppose that we have new versions M ′
1 and M ′

2 for M1 and M2. Note that, in general, either M ′
1

or M ′
2 could be identical to its old version. DynamicCheck will now reuse T and invoke the dynamic

L∗ algorithm to automatically learn an assumption A′ such that (i) M ′
1 ‖ A′ � ϕ and (ii) M ′

2 � A′.
More precisely, DynamicCheck proceeds iteratively as follows:

1. It checks if M1 = M ′
1. If so, it starts learning from the previous table T (i.e., it

sets T ′ := T). Otherwise, it revalidates T against M ′
1 to obtain a new table T ′.

CMU/SEI-2005-TR-008 17

2. It derives a conjecture A′ from T ′ and checks if M ′
2 � A′. If this check passes, it

terminates with TRUE and the new assumption A′. Otherwise, it obtains a
counterexample CE .

3. It analyzes CE to see if CE corresponds to a real counterexample to
M ′

1 ‖M ′
2 � ϕ. If so, it constructs such a counterexample and terminates with

FALSE. Otherwise, it updates T ′ using CE .

4. It makes T ′ closed by making membership queries and repeats the process from
Step 2.

3.3.3.2 Generalized DynamicCheck

We first describe the key ideas that enable us to reuse the previous assumptions and then present the
complete DynamicCheck algorithm for multiple DLAs. Due to its dynamic nature, the algorithm will
be able to locally identify the set of assumptions that must be modified to revalidate the system.

Incremental Changes Between Successive Assumptions. Recall that the L∗ algorithm
maintains an observation table (S, E, T) corresponding to an assumption A for every component M .
During an initial compatibility check, this table stores the information about membership of the
current set of traces in an unknown language U (i.e., the language of the weakest assumption for M).
Upgrading the component M modifies this unknown language for the corresponding assumption from
U to, say, U ′. Therefore, checking compatibility after an upgrade requires that the learner must
compute a new assumption A′ corresponding to U ′. In most cases, the languages L(A) and L(A′)
may differ only slightly; hence, the information about the behaviors of A is reused in computing A′.

Table Revalidation. The original L∗ algorithm computes A′ starting from an empty table. However,
as mentioned before, a more efficient algorithm would intend to reuse the previously inferred set of
elements of S and E to learn A′. The result in Section 3.3.1.2 (Theorem 2) precisely enables the L∗

algorithm to achieve this goal. In particular, since L∗ terminates starting from any valid table, the
assumption learner first obtains a valid table by reusing words in S and E: update T by asking
membership queries with regard to U ′ for each ρ ∈ (S ∪ S • Σ̂) • E. The valid table (S, E, T ′)
thereby obtained is subsequently made closed, and then learning proceeds in the normal fashion.
Doing this allows the compatibility check to restart from any previous set of assumptions by
revalidating them. The GenerateAssumption module implements this feature (see Figure 5).

Overall DynamicCheck Procedure. The DynamicCheck procedure instantiates the AG rule for
n components and enables checking multiple upgrades simultaneously by reusing previous
assumptions and verification results. In the description, we denote the previous and new versions of a
component DLA by M and M ′ and the previous and new versions of component assemblies byM
andM′, respectively. For ease of description, we always use a property, ϕ, to denote the right-hand
side of the top-level proof obligation of the compositional rule. We denote the modified property2 at
each recursion level of the algorithm by ϕ′. The old and new assumptions are denoted by A and A′,
respectively.

Figure 5 presents the pseudo-code of the DynamicCheck algorithm to perform the compatibility
check. Lines 1-4 describe the case whenM contains only one component. In Line 5, an assumption

2 Under the recursive application of the compatibility-check procedure, the updated property ϕ′ corresponds to an assump-
tion from the previous recursion level.

18 CMU/SEI-2005-TR-008

A′ corresponding to M ′ and ϕ′ is generated using dynamic L∗ such that M ′ ‖ A′ � ϕ′. Lines 6-8
describe recursive invocation of DynamicCheck onM\M against property A′. Finally, Lines 9-15
show how the algorithm detects a counterexample CE and updates A′ with it or terminates with a
TRUE/FALSE result. The salient features of this algorithm are the following:

• GenerateAssumption (Line 5) does not generate new assumptions every time
DynamicCheck is invoked. Instead, it reuses (by revalidating if necessary) the
assumption A computed in the previous compatibility check. When CE is used to
update A, GenerateAssumption (Line 12) does not need to revalidate A because
it had to be validated previously.

• Verification checks are repeated on a component M ′ (or a collection of
componentsM′ \M ′) only if it is (or they are) found to be different from the
previous version M (M\M) or if the corresponding property ϕ has changed
(Lines 3, 7, 12). Otherwise, the previously computed result is reused (Lines 4, 8).

DynamicCheck (M′, ϕ′) returns counterexample or TRUE

1: let M ′ = first element ofM′;
2: if (M′ = {M ′})
3: if (M �= M ′ or ϕ �= ϕ′) return (M ′ � ϕ′);
4: else return M � ϕ;
5: A′ := GenerateAssumption(M ′, ϕ′);
6: if (A �= A′ orM\M �=M′ \M ′)
7: CE := DynamicCheck(M′ \M ′, A′);
8: else CE := DynamicCheck(M\M , A);
9: while(CE is non-empty)
10: if (M ′ ‖ CE � ϕ′)
11: A′ := UpdateAssumption (A′,CE);
12: A′ := GenerateAssumption (M ′, ϕ′);
13: CE = DynamicCheck (M′ \M ′, A′);
14: else return a witness counterexample CE to M ′ ‖ CE �� ϕ′;
15: return TRUE;

Figure 5: Pseudo-Code for Efficient Compatibility Checking

The correctness of DynamicCheck follows from the following theorem.

Theorem 3 Given modifiedM′ and ϕ′, the DynamicCheck algorithm always terminates with either
TRUE or a counterexample CE toM′ � ϕ′.

Proof. The notion of weakest assumptions is used in proving the correctness of DynamicCheck. For
any DLA M , there must exist a weakest environment assumption DLA WA such that M ‖ Eϕ iff
E �WA. Suppose we have a system of components M1, . . . , Mn and a global property ϕ. Consider
rules of the form Mi ‖ Ai � Ai−1(1 ≤ i ≤ n− 1, A0 = ϕ) and Mn � An−1 as used in the recursive
procedure DynamicCheck to show that M1 ‖ .. ‖Mn � ϕ. It is clear that a weakest assumption
WA1 exists such that M1 ‖WA1 � ϕ. Given WA1, it follows that WA2 must exist so that
M2 ‖WA2 �WA1. Therefore, by induction on i, there must exist weakest assumptions WAi for
1 ≤ i ≤ n− 1, such that Mi ‖WAi �WAi−1(1 ≤ i ≤ n− 1,WA0 = ϕ) and Mn � An−1. Also, by

CMU/SEI-2005-TR-008 19

Theorem 2, UpdateAssumption(A,CE) must terminate starting from any valid assumption A′ with
respect to U ′ and a counterexample CE ∈ L(A′)⊕ U ′.

Suppose, without loss of generality, that component DLA M ′ is upgraded. Note that after an upgrade,
a weakest assumption WA′ (possibly different from WA) must exist for every M ′ ∈M′. We proceed
by induction over the size k ofM′. In the base case, it is clear that we need to model check M ′

against ϕ′ only if either M or ϕ changed (Line 3). By performing this model checking, either a
counterexample to M ′ � ϕ′ is returned or the previous M � ϕ (Line 4) result holds.

Assume for the inductive case that DynamicCheck(M′ \M ′, A′) terminates with either TRUE or a
counterexample CE . It is clear from its definition that A′ computed by GenerateAssumption (Line
5) is valid. If Line 6 holds (i.e., A′ �= A orM\M �=M′ \M ′), then, by inductive hypothesis,
execution of Line 7 terminates with either a TRUE result or a counterexample CE . Otherwise, the
previously computed CE result is used (Line 8). It remains to be shown that Lines 9-15 compute the
correct return value based on this result.

If this result is TRUE, it follows from the soundness of the assume-guarantee rule thatM′ � ϕ′ and
DynamicCheck returns TRUE (Line 15). If M ′ ‖ CE �� ϕ′ (Line 10), then, by set-theoretic arguments
based on the definitions of A′ and CE , we know thatM′ �� P ′ and a suitable witness CE ′ (Line 14)
is returned by the algorithm. Otherwise, since A′ is valid, both UpdateAssumption (Line 11) and
GenerateAssumption (Line 12) must terminate by learning a new assumption, say A′′, such that
M ′ ‖ A′′ � ϕ′. It follows from the proof of correctness of L∗ that |A′| < |A′′| and from the definition
of weakest assumptions that |A′′| ≤ |WA′|. Also, by inductive hypothesis, Line 13 must terminate
with the correct CE result. Hence, Lines 9-13 of the while loop may be executed only a finite number
of times until |A′′| = |WA′|, when (by set-theoretic arguments) either the result is TRUE (Line 15) or a
witness counterexample CE ′ (Line 14) forM′ �� P ′ is returned.

Further Optimizations. Recall that our procedure reuses assumptions generated during previous
compatibility checks. We further optimize it by identifying a subset of assumptions that must be
revalidated at the initialization of the next check. This optimization is enabled by the following lemma
whose proof follows directly from Theorem 3 and the definition of weakest assumptions.

Lemma 1 LetM = {M1, . . . , Mn} be an assembly of components; let A = {A1, . . . , An−1} be a set
of previously computed assumptions; and let I ⊆ {1, . . . , n} be an index set. Also, let {M ′

i | i ∈ I}
be the set of new components. If k is the minimum index of I, then it is sufficient for DynamicCheck
to revalidate only the assumptions in the set {Aj | j ≥ k ∧ j ≤ n}.

3.4 Feedback
Recall that for some i ∈ I, if our containment check detects that Ci �� C

′
i , it also computes a set Fi.

Intuitively each element of Fi represents a behavior of Ci that is not a behavior of C
′
i . We now present

our process of generating feedback from Fi. In the rest of this section, we will write C ,C
′
, and F to

mean Ci, C
′
i , and Fi, respectively.

Consider any behavior π in F . Recall that π is a trace of a DLA M obtained by predicate abstraction
of C . By simulating π on M , we construct an alternating sequence Rep(π) = 〈s1, α1, . . . , sn〉 of
states and actions of M corresponding to π. Recall from our earlier discussion of predicate abstraction

20 CMU/SEI-2005-TR-008

(see Section 3.2) that each si is of the form (st i,Vi), where st i is a statement of C and Vi is a
predicate valuation. Thus, Rep(π) = 〈(st1,V1), α1, . . . , (stn,Vn)〉.

We also know that π represents an actual behavior of C but not an actual behavior of C
′
. Thus, there

is a prefix Pref (π) of π such that Pref (π) represents a behavior of C
′
. However, any extension of

Pref (π) is no longer a valid behavior of C
′
. Note that Pref (π) can be constructed by simulating π on

C
′
. Let us denote the suffix of π after Pref (π) by Suff (π). Since Pref (π) is an actual behavior of

C
′
, we can also construct a representation for Pref (π) in terms of the statements and predicate

valuations of C
′
. Let us denote this representation by Rep ′(Pref (π)).

As our feedback, we produce as output, for each π ∈ F , the following representations:
Rep(Pref (π)), Rep(Suff (π)), and Rep′(Pref (π)). Such feedback allows us to identify the exact
divergence point of π beyond which it ceases to correspond to any concrete behavior of C

′
. Since the

feedback refers to a program statement, it allows us to understand at the source code level why C is
able to match π completely, but C

′
is forced to diverge from π beyond Pref (π). This understanding

makes it easier to modify C
′

so that the missing behavior π can be added back to it.

3.5 Implementation and Experimental Evaluation
The procedures for checking, in a dynamic manner, the substitutability of components, were
implemented in the COPPER model checker [Chaki 05c]. The tool includes a front end for parsing and
constructing control-flow graphs from C programs. Further, it is capable of model checking properties
on programs based on automated may-abstraction (existential abstraction), and it allows
compositional verification by employing learning-based, automated assume-guarantee reasoning. We
reused the above features of COPPER in the implementation of the substitutability check. The tool
interface was modified so a collection of components and corresponding upgrades could be specified.
We extended the learning-based, automated assume-guarantee to obtain its dynamic version, as
required in the compatibility check. Doing this involved keeping multiple learner instances across
calls to the verification engine and implementing algorithms to validate multiple, previous observation
tables in an efficient way during learning. We also implemented the underapproximation generation
algorithms for performing the containment check on small program examples. Doing this involved
procedures for implementing must-abstractions from C code using predicates obtained from C
components. The automated refinement procedures are still under implementation and would enable
containment check of larger benchmarks.

We validated the component substitutability framework while verifying upgrades of a benchmark
provided to us by our industrial partner, ABB Inc. [ABB 05]. The benchmarks consist of seven
components which together implement an interprocess communication (IPC) protocol. The combined
state space is over 106.

We used a set of properties describing the functionality of the verified portion of the IPC protocol. We
used upgrades of the write-queue (ipc1) and the ipc-queue (ipc2 and ipc3) components. The upgrades
had both missing and extra behaviors compared to their original versions. We verified two properties
(P1 and P2) before and after the upgrades. We also verified the properties on a simultaneous upgrade
(ipc4) of both the components. P1 specifies that a process may write data into the ipc-queue only after
it obtains a lock for the corresponding critical section. P2 specifies an order in which data may be
written into the ipc-queue. Figure 6 shows the comparison between the time required for initial
verification of the IPC system, and the time taken by DynamicCheck for verifying the upgrades. In

CMU/SEI-2005-TR-008 21

Figure 6, #Mem. Queries denotes the total number of membership queries made during verification
of the original assembly, Torig denotes the time required for the verification of the original assembly,
and Tug denotes the time required for the verification of the upgraded assembly.

Upgrade # (Prop.) # Mem. Queries Torig (msec) Tug (msec)
ipc1(P1) 279 2260 13
ipc1(P2) 308 1694 14
ipc2(P1) 358 3286 17
ipc2(P2) 232 805 10
ipc3(P1) 363 3624 17
ipc3(P2) 258 1649 14
ipc4(P1) 355 1102 24

Figure 6: Summary of Results for DynamicCheck

We observed that the previously generated assumptions in all the cases were also sufficient to prove
the properties on the upgraded system. Hence, the compatibility check succeeded in a small fraction
of time (Tug) as compared to the time for compositional verification (Torig) of the original system.

22 CMU/SEI-2005-TR-008

4 Related Work

Related projects often impose the restriction that every behavior of a new component must also be a
behavior of the old component. In such a case, the new component is said to refine the old component.
For instance, de Alfaro and colleagues [de Alfaro 01, Chakrabarti 02] define a notion of interface
automaton for modeling component interfaces and show compatibility between components via
refinement and consistency between interfaces. However, automated techniques for constructing
interface automata from component implementations are not presented. In contrast, our approach
automatically extracts conservative DLA models (which are similar to finite-state interface automata)
from component implementations. Moreover, we do not require refinement among the old
components and their new versions.

McCamant and Ernst [McCamant 04] suggest a technique for checking compatibility of
multi-component upgrades. They derive consistency criteria by focusing on input/output component
behavior only and abstract away the temporal information. Even though they state that their
abstractions are unsound in general, they report success in detecting important errors. In contrast, our
abstractions preserve temporal information about component behavior and are always sound. They
also use a refinement-based notion on the generated consistency criteria for showing compatibility.

The application of learning is extremely useful from a pragmatic point of view since it is amenable to
complete automation, and it is gaining rapid popularity in formal verification [Groce 02]. The use of
learning for automated assume-guarantee reasoning was proposed originally by Cobleigh and
colleagues [Cobleigh 03]. The use of learning along with predicate abstraction has also been applied
in the context of interface synthesis [Alur 05] and various types of assume-guarantee proof rules for
automated software verification [Chaki 04a].

This work is related to our earlier project [Chaki 04b] that solves the component-substitutability
problem in the context of verifying individual component upgrades. A major improvement of the
current work is that it is aimed at verifying the component substitutability in the presence of
simultaneous upgrades of multiple components. Another distinction of this work is that it provides an
innovative dynamic assume-guarantee reasoning framework for the compatibility check. The dynamic
nature of the compatibility check allows reusing previously computed assumptions to prove or
disprove the global properties of the updated system.

Additionally, this report gives a new solution to the containment-check problem presented by Chaki
and colleagues [Chaki 04b]. In our earlier work, the containment step is solved using learning
techniques for regular sets and handles finite-state systems only. In contrast, the new approach is
extended to handle infinite-state C programs. Moreover, this report defines a new technique based on
the simultaneous use of overapproximations and underapproximations obtained via existential and
universal abstractions.

CMU/SEI-2005-TR-008 23

24 CMU/SEI-2005-TR-008

5 Conclusion

This report presents results of the SEI IRAD project on verification of evolving software via
component-substitutability analysis. It addresses a critical and vital problem of
component-substitutability analysis and provides a solution that consists of two phases: (1)
containment and (2) compatibility checks. The compatibility check performs compositional reasoning
with help of a dynamic regular language-inference algorithm and a model checker. Our experiments
confirm that the dynamic approach is more effective than complete revalidation of the system after an
upgrade. The containment check detects behaviors that were present in each component before, but
not after, the upgrade. These behaviors are used to construct useful feedback to the developers. We
observed that the order of components used to discharge the assume-guarantee rules has a significant
impact on the algorithm runtimes and, hence, needs investigation. We would further like to investigate
a modification of DynamicCheck based on a more efficient L∗ algorithm by Rivest and
colleagues [Rivest 93] to improve its performance.

The component-substitutability analysis has been implemented in the COPPER tool [Chaki 05c] that
can be invoked within the ComFoRT framework. The verification framework was validated on an
industrial benchmark provided by our industrial partner, ABB [ABB 05], and the framework
demonstrated encouraging results.

CMU/SEI-2005-TR-008 25

26 CMU/SEI-2005-TR-008

References

[Abadi 95] Abadi, M. & Lamport, L. “Conjoining Specifications”. ACM
Transactions on Programming Languages and Systems (TOPLAS)
17, 3 (May 1995): 507–534.

[ABB 05] ABB. http://www.abb.com, 2005.

[Alur 96] Alur, R. & Henzinger, T. “Reactive Modules”, 207–218.
Proceedings of the 11th Annual IEEE Symposium on Logic in
Computer Science (LICS ’96). New Brunswick, NJ, July 27–30,
1996. Los Alamitos, CA: IEEE Computer Society Press, 1996.

[Alur 05] Alur, R.; Cerny, P.; Gupta, G.; Madhusudan, P.; Nam, W.; &
Srivastava, A. “Synthesis of Interface Specifications for Java
Classes”, 98–109. Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’05). Long Beach, CA, January 12–14, 2005.
New York, NY: Association for Computing Machinery (ACM),
2005.

[Angluin 87] Angluin, D. “Learning Regular Sets from Queries and
Counterexamples”. Information and Computation 75, 2 (November
1987): 87–106.

[Ball 00] Ball, T. & Rajamani, S. Boolean Programs: A Model and Process
for Software Analysis (MSR-TR-2000-14). Redmond, WA:
Microsoft Research, February 2000.
ftp://ftp.research.microsoft.com/pub/tr/tr-2000-14.pdf.

[Ball 01] Ball, T.; Majumdar, R.; Millstein, T.; & Rajamani, S. “Automatic
Predicate Abstraction of C Programs”, 203–213. Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). Snowbird, UT, June 20-22, 2001. New
York, NY: Association for Computing Machinery, 2001.

[Chaki 04a] Chaki, S.; Clarke, E.; Giannakopoulou, D.; & Păsăreanu, C. S.
Abstraction and Assume-Guarantee Reasoning for Automated
Software Verification (05.02). Mountain View, CA: Research
Institute for Advanced Computer Science (RIACS), 2004.

[Chaki 04b] Chaki, S.; Sharygina, N.; & Sinha, N. “Verification of Evolving
Software”, 55–61. Proceedings of the Third Workshop on
Specification and Verification of Component Based Systems
(SAVCBS). Newport Beach, CA, October 31–November 1, 2004.
Ames, Iowa: Iowa State University, 2004.

[Chaki 04c] Chaki, S.; Clarke, E.; Groce, A.; Ouaknine, J.; Strichman, O.; &
Yorav, K. “Efficient Verification of Sequential and Concurrent C

CMU/SEI-2005-TR-008 27

Programs”. Formal Methods in System Design (FMSD) 25, 2–3
(September–November 2004): 129–166.

[Chaki 05a] Chaki, S.; Clarke, E.; Sharygina, N.; & Sinha, N. “Dynamic
Component Substitutability Analysis”, 512–528. Proceedings of
the International Symposium on Formal Methods Europe, volume
3582 of Lecture Notes in Computer Science. New Castle, UK, July
18–22, 2005. New York, NY: Springer-Verlag, 2005.

[Chaki 05b] Chaki, S. Learning Doubly Labeled Automata Using Queries and
Counterexamples.
http://www.sei.cmu.edu/staff/chaki/publications/learn-se-trace.pdf,
2005.

[Chaki 05c] Chaki, S.; Ivers, J.; Sharygina, N.; & Wallnau, K. “The ComFoRT
Reasoning Framework”, 164–169. Proceedings of the 17th
International Conference on Computer Aided Verification (CAV
’05), volume 3576 of Lecture Notes in Computer Science.
Edinburgh, Scotland, July 6–10, 2005. New York, NY:
Springer-Verlag, 2005.

[Chakrabarti 02] Chakrabarti, A.; de Alfaro, L.; Henzinger, T. A.; Jurdzinski, M.; &
Mang, F. Y. C. “Interface Compatibility Checking for Software
Modules”, 428–441. Proceedings of the 14th International
Conference on Computer Aided Verification (CAV ’02), volume
2404 of Lecture Notes in Computer Science. Copenhagen,
Denmark, July 27–31, 2002. New York, NY: Springer-Verlag, 2002.

[Clarke 82] Clarke, E. & Emerson, A. “Design and Synthesis of
Synchronization Skeletons for Branching Time Temporal Logic”,
52–71. Proceedings of Workshop on Logic of Programs, volume
131 of Lecture Notes in Computer Science. Yorktown Heights, New
York, May 4–6, 1982. Berlin, Germany: Springer-Verlag, 1982.

[Clarke 86] Clarke, E. M.; Emerson, E. A.; & Sistla, A. “Automatic
Verification of Finite-State Concurrent Systems Using Temporal
Logic Specifications”. ACM Transactions on Programming
Languages and Systems (TOPLAS) 8, 2 (1986): 244–263.

[Clarke 89] Clarke, E.; Long, D.; & McMillan, K. “Compositional Model
Checking”, 353–362. Proceedings of the Fourth Annual IEEE
Symposium on Logic in Computer Science (LICS ’89). Pacific
Grove, CA, June 5–8, 1989. Washington, DC: IEEE Computer
Society Press, 1989.

[Clarke 92] Clarke, E.; Grumberg, O.; & Long, D. “Model Checking and
Abstraction”, 343–354. Proceedings of the 19th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’92). Albuquerque, NM, January 19–22, 1992.
New York, NY: Association for Computing Machinery (ACM),
1992.

28 CMU/SEI-2005-TR-008

[Clarke 00a] Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; & Veith, H.
“Counterexample-Guided Abstraction Refinement”, 154–169.
Proceedings of the 12th International Conference on Computer
Aided Verification (CAV ’00), volume 1855 of Lecture Notes in
Computer Science. Chicago, IL, July 15–19, 2000. Berlin,
Germany: Springer-Verlag, 2000.

[Clarke 00b] Clarke, E. M.; Grumberg, O.; & Peled, D. Model Checking.
Cambridge, MA: MIT Press, 2000.

[Cobleigh 03] Cobleigh, J. M.; Giannakopoulou, D.; & Păsăreanu, C. S.
“Learning Assumptions for Compositional Verification”, 331–346.
Proceedings of the Ninth International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS
’03), volume 2619 of Lecture Notes in Computer Science. Warsaw,
Poland, April 7–11, 2003. New York, NY: Springer-Verlag, 2003.

[Colón 98] Colón, M. & Uribe, T. E. “Generating Finite-State Abstractions of
Reactive Systems Using Decision Procedures”, 293–304.
Proceedings of the 10th International Conference on Computer
Aided Verification (CAV ’98), volume 1427 of Lecture Notes in
Computer Science. Vancouver, Canada, June 28–July 2, 1998.
Berlin, Germany: Springer-Verlag, 1998.

[Das 01] Das, S. & Dill, D. “Successive Approximation of Abstract
Transition Relations”, 51–60. Proceedings of the 16th Annual IEEE
Symposium on Logic in Computer Science (LICS ’01). Boston, MA,
June 16–19, 2001. Los Alamitos, CA: IEEE Computer Society
Press, 2001.

[de Alfaro 01] de Alfaro, L. & Henzinger, T. A. “Interface Automata”, 109–120.
Proceedings of the Ninth ACM SIGSOFT Symposium on
Foundations of Software Engineering (FSE ’01). Vienna, Austria,
September 10–14, 2001. New York, NY: ACM Press, 2001.

[Giannakopoulou 02] Giannakopoulou, D.; Păsăreanu, C. S.; & Barringer, H.
“Assumption Generation for Software Component Verification”,
3–12. Proceedings of the 17th International Conference on
Automated Software Engineering (ASE ’02). Edinburgh, Scotland,
September 23–27, 2002. Los Alamitos, CA: IEEE Computer
Society Press, 2002.

[Graf 97] Graf, S. & Saı̈di, H. “Construction of Abstract State Graphs with
PVS”, 72–83. Proceedings of the Ninth International Conference
on Computer Aided Verification (CAV ’97), volume 1254 of Lecture
Notes in Computer Science. Haifa, Israel, June 22–25, 1997. New
York, NY: Springer-Verlag, 1997.

[Groce 02] Groce, A.; Peled, D.; & Yannakakis, M. “Adaptive Model
Checking”, 357–370. Proceedings of the Eighth International

CMU/SEI-2005-TR-008 29

Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS ’02), volume 2280 of Lecture Notes in
Computer Science. Grenoble, France, April 8–12, 2002. New York,
NY: Springer-Verlag, 2002.

[Kurshan 95] Kurshan, R. Computer-Aided Verification of Coordinating
Processes: The Automata-Theoretic Approach. Princeton, NJ:
Princeton University Press, 1995.

[McCamant 04] McCamant, S. & Ernst, M. D. “Early Identification of
Incompatibilities in Multi-Component Upgrades”, 440–464.
Proceedings of the 18th European Conference on Object-Oriented
Programming (ECOOP ’04), volume 3086 of Lecture Notes in
Computer Science. Oslo, Norway, June 14–18, 2004. New York,
NY: Springer-Verlag, 2004.

[McMillan 97] McMillan, K. “A Compositional Rule for Hardware Design
Refinement”, 24–35. Proceedings of the Ninth International
Conference on Computer Aided Verification (CAV ’97), volume
1254 of Lecture Notes in Computer Science. Haifa, Israel, June
22–27, 1997. New York, NY: Springer-Verlag, 1997.

[Nellemann 94] Nellemann, D. Air Force F-22 Embedded Computers .
http://archive.gao.gov/t2pbat2/152615.pdf, September 1994.

[Pnueli 77] Pnueli, A. “The Temporal Logic of Programs”, 46–57. Proceedings
of the 18th Annual Symposium on Foundations of Computer
Science. Providence, RI, October 31–November 2, 1977. New
York, NY: IEEE Computer Society Press, 1977.

[Pnueli 85] Pnueli, A. “In Transition from Global to Modular Temporal
Reasoning About Programs”, 123–144. Logics and Models of
Concurrent Systems. New York, NY: Springer-Verlag, 1985.

[Rivest 93] Rivest, R. L. & Schapire, R. E. “Inference of Finite Automata
Using Homing Sequences”. Information and Computation 103, 2
(1993): 299–347.

[Roscoe 98] Roscoe, A. W. The Theory and Practice of Concurrency. New
York: Prentice-Hall International, 1998.

[Slabodkin 98] Slabodkin, G. “Software Glitches Leave Navy Smart Ship Dead in
the Water”. Government Computer News 17, 7 (July 13 1998).
http://appserv.gcn.com/17 17/news/33727-1.html.

[U.S.-Canada 04] U.S.-Canada Power System Outage Task Force. Final Report on
the August 14 Blackout in the United States and Canada.
https://reports.energy.gov/, April 2004.

[U.S. Govt. 05] F-35 Joint Strike Fighter Program. http://www.jsf.mil/, 2005.

30 CMU/SEI-2005-TR-008

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

December 2005
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Verification of Evolving Software via Component Substitutability
Analysis

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Sagar Chaki, Edmund Clarke, Natasha Sharygina, Nishant Sinha
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TR-008

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2005-008

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Formal verification by model checking has the potential to produce major enhancements in the reliability and
robustness of software. However, a shortcoming in most model checking research is the failure to consider
how to make the use of model checking routine throughout various stages of software development. This re-
port presents results of the Independent Research and Development (IRAD) project on verification of evolving
software conducted at the Software Engineering Institute in 2005. The research conducted as part of the
IRAD project considered ways to reduce the effort of subsequent verifications. In particular, it resulted in the
development of techniques that exploit the results of previous verification efforts and focus only on the por-
tions of the system that have changed (components). Thus, these new techniques incorporate model check-
ing into development processes in a much less intrusive or cumbersome manner than previous verification
techniques.

The report presents an automated and compositional procedure to solve the component substitutability prob-
lem. The solution contributes two techniques for checking the correctness of software upgrades: (1) a tech-
nique based on simultaneous use of overapproximations and underapproximations obtained via existential
and universal abstractions and (2) a dynamic assume-guarantee reasoning algorithm in which previously
generated component assumptions are reused and altered “on the fly” to prove or disprove the global safety
properties on the updated system. When upgrades are found to be non-substitutable, the solution generates
constructive feedback that shows developers how to improve the components. The substitutability approach
has been implemented and validated in the Component Formal Reasoning Technology (COMFORT) model
checking tool set. The experimental evaluation of an industrial benchmark demonstrates encouraging results.

14. SUBJECT TERMS

component substitutability, model checking, software development,
independent research and development, IRAD, verification

15. NUMBER OF PAGES

40

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Verification of EvolvingSoftware via ComponentSubstitutability Analysis
	Table of Contents
	List of Figures
	Abstract
	1 Introduction
	2 Model Checking
	3 Verification of Evolving Software
	4 Related Work
	5 Conclusion
	References

